Skip to content

mathematics#

Group Theory Continued - Rings & Fields

In my previous post I introduced the idea of a group, which is an abstract mathematical concept that is defined as a set with a binary operation fulfilling a few mathematical properties. Many cryptography primitives are based on the mathematics of groups such as asymmetric encryption, digital signatures and zero knowledge proofs, which we will cover later. In this post I introduce rings and fields and explain how they relate to groups.